ryujin 2.1.1 revision 0348cbb53a3e4b1da2a4c037e81f88f2d21ce219
Public Types | Public Member Functions | List of all members
ryujin::ShallowWater::HyperbolicSystemView< dim, Number > Class Template Reference

#include <source/shallow_water/hyperbolic_system.h>

Public Types

using ScalarNumber = typename get_value_type< Number >::type
 

Public Member Functions

 HyperbolicSystemView (const HyperbolicSystem &hyperbolic_system)
 
template<int dim2, typename Number2 >
auto view () const
 
Access to runtime parameters
DEAL_II_ALWAYS_INLINE ScalarNumber gravity () const
 
DEAL_II_ALWAYS_INLINE ScalarNumber manning_friction_coefficient () const
 
DEAL_II_ALWAYS_INLINE ScalarNumber reference_water_depth () const
 
DEAL_II_ALWAYS_INLINE ScalarNumber dry_state_relaxation_small () const
 
DEAL_II_ALWAYS_INLINE ScalarNumber dry_state_relaxation_large () const
 
Special functions for boundary states
template<int component>
state_type prescribe_riemann_characteristic (const state_type &U, const state_type &U_bar, const dealii::Tensor< 1, dim, Number > &normal) const
 
template<typename Lambda >
state_type apply_boundary_conditions (const dealii::types::boundary_id id, const state_type &U, const dealii::Tensor< 1, dim, Number > &normal, const Lambda &get_dirichlet_data) const
 
State transformations (primitive states, expanding

dimensionality, Galilei transform, etc.)

template<typename ST >
state_type expand_state (const ST &state) const
 
template<typename ST >
state_type from_initial_state (const ST &initial_state) const
 
state_type from_primitive_state (const state_type &primitive_state) const
 
state_type to_primitive_state (const state_type &state) const
 
template<typename Lambda >
state_type apply_galilei_transform (const state_type &state, const Lambda &lambda) const
 

Types and constexpr constants

using state_type = dealii::Tensor< 1, problem_dimension, Number >
 
using flux_type = dealii::Tensor< 1, problem_dimension, dealii::Tensor< 1, dim, Number > >
 
using flux_contribution_type = std::tuple< state_type, Number >
 
using precomputed_type = std::array< Number, n_precomputed_values >
 
using initial_precomputed_type = std::array< Number, n_initial_precomputed_values >
 
using StateVector = Vectors::StateVector< ScalarNumber, problem_dimension, n_precomputed_values >
 
using HyperbolicVector = Vectors::MultiComponentVector< ScalarNumber, problem_dimension >
 
using PrecomputedVector = Vectors::MultiComponentVector< ScalarNumber, n_precomputed_values >
 
using InitialPrecomputedVector = Vectors::MultiComponentVector< ScalarNumber, n_initial_precomputed_values >
 
static constexpr unsigned int problem_dimension = 1 + dim
 
static const auto component_names
 
static const auto primitive_component_names
 
static constexpr unsigned int n_precomputed_values = 2
 
static const auto precomputed_names
 
static constexpr unsigned int n_initial_precomputed_values = 1
 
static const auto initial_precomputed_names
 

Computing precomputed quantities

static constexpr unsigned int n_precomputation_cycles = 1
 
template<typename DISPATCH , typename SPARSITY >
void precomputation_loop (unsigned int cycle, const DISPATCH &dispatch_check, const SPARSITY &sparsity_simd, StateVector &state_vector, unsigned int left, unsigned int right) const
 

Flux computations

static constexpr bool have_high_order_flux = true
 
flux_type f (const state_type &U) const
 
flux_type g (const state_type &U) const
 
state_type star_state (const state_type &U, const Number &Z_left, const Number &Z_right) const
 
std::array< state_type, 2 > equilibrated_states (const flux_contribution_type &, const flux_contribution_type &) const
 
flux_contribution_type flux_contribution (const PrecomputedVector &pv, const InitialPrecomputedVector &piv, const unsigned int i, const state_type &U_i) const
 
flux_contribution_type flux_contribution (const PrecomputedVector &pv, const InitialPrecomputedVector &piv, const unsigned int *js, const state_type &U_j) const
 
state_type flux_divergence (const flux_contribution_type &flux_i, const flux_contribution_type &flux_j, const dealii::Tensor< 1, dim, Number > &c_ij) const
 
state_type high_order_flux_divergence (const flux_contribution_type &flux_i, const flux_contribution_type &flux_j, const dealii::Tensor< 1, dim, Number > &c_ij) const
 
state_type affine_shift (const flux_contribution_type &flux_i, const flux_contribution_type &flux_j, const dealii::Tensor< 1, dim, Number > &c_ij, const Number &d_ij) const
 

Computing source terms

static constexpr bool have_source_terms = true
 
state_type manning_friction (const state_type &U, const Number &h_star, const ScalarNumber tau) const
 
state_type nodal_source (const PrecomputedVector &pv, const unsigned int i, const state_type &U_i, const ScalarNumber tau) const
 
state_type nodal_source (const PrecomputedVector &pv, const unsigned int *js, const state_type &U_j, const ScalarNumber tau) const
 

Computing derived physical quantities

Number inverse_water_depth_mollified (const state_type &U) const
 
Number water_depth_sharp (const state_type &U) const
 
Number inverse_water_depth_sharp (const state_type &U) const
 
Number filter_dry_water_depth (const Number &h) const
 
Number kinetic_energy (const state_type &U) const
 
Number pressure (const state_type &U) const
 
Number speed_of_sound (const state_type &U) const
 
Number mathematical_entropy (const state_type &U) const
 
state_type mathematical_entropy_derivative (const state_type &U) const
 
bool is_admissible (const state_type &U) const
 
static Number water_depth (const state_type &U)
 
static dealii::Tensor< 1, dim, Number > momentum (const state_type &U)
 

Detailed Description

template<int dim, typename Number>
class ryujin::ShallowWater::HyperbolicSystemView< dim, Number >

A view of the HyperbolicSystem that makes methods available for a given dimension dim and choice of number type Number (which can be a scalar float, or double, as well as a VectorizedArray holding packed scalars.

Intended usage:

HyperbolicSystem hyperbolic_system;
const auto view = hyperbolic_system.template view<dim, Number>();
const auto flux_i = view.flux_contribution(...);
const auto flux_j = view.flux_contribution(...);
const auto flux_ij = view.flux_divergence(flux_i, flux_j, c_ij);
// etc.

Definition at line 100 of file hyperbolic_system.h.

Member Typedef Documentation

◆ ScalarNumber

template<int dim, typename Number >
using ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::ScalarNumber = typename get_value_type<Number>::type

The underlying scalar number type.

Definition at line 124 of file hyperbolic_system.h.

◆ state_type

template<int dim, typename Number >
using ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::state_type = dealii::Tensor<1, problem_dimension, Number>

Storage type for a (conserved) state vector \(\boldsymbol U\).

Definition at line 183 of file hyperbolic_system.h.

◆ flux_type

template<int dim, typename Number >
using ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::flux_type = dealii::Tensor<1, problem_dimension, dealii::Tensor<1, dim, Number> >

Storage type for the flux \(\mathbf{f}\).

Definition at line 188 of file hyperbolic_system.h.

◆ flux_contribution_type

template<int dim, typename Number >
using ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::flux_contribution_type = std::tuple<state_type, Number>

The storage type used for flux contributions.

Definition at line 194 of file hyperbolic_system.h.

◆ precomputed_type

template<int dim, typename Number >
using ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::precomputed_type = std::array<Number, n_precomputed_values>

Array type used for precomputed values.

Definition at line 234 of file hyperbolic_system.h.

◆ initial_precomputed_type

template<int dim, typename Number >
using ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::initial_precomputed_type = std::array<Number, n_initial_precomputed_values>

Array type used for precomputed initial values.

Definition at line 250 of file hyperbolic_system.h.

◆ StateVector

template<int dim, typename Number >
using ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::StateVector = Vectors:: StateVector<ScalarNumber, problem_dimension, n_precomputed_values>

A compound state vector.

Definition at line 262 of file hyperbolic_system.h.

◆ HyperbolicVector

template<int dim, typename Number >
using ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::HyperbolicVector = Vectors::MultiComponentVector<ScalarNumber, problem_dimension>

MulticomponentVector for storing the hyperbolic state vector:

Definition at line 268 of file hyperbolic_system.h.

◆ PrecomputedVector

template<int dim, typename Number >
using ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::PrecomputedVector = Vectors::MultiComponentVector<ScalarNumber, n_precomputed_values>

MulticomponentVector for storing a vector of precomputed states:

Definition at line 274 of file hyperbolic_system.h.

◆ InitialPrecomputedVector

template<int dim, typename Number >
using ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::InitialPrecomputedVector = Vectors::MultiComponentVector<ScalarNumber, n_initial_precomputed_values>

MulticomponentVector for storing a vector of precomputed initial states:

Definition at line 281 of file hyperbolic_system.h.

Constructor & Destructor Documentation

◆ HyperbolicSystemView()

template<int dim, typename Number >
ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::HyperbolicSystemView ( const HyperbolicSystem hyperbolic_system)
inline

Constructor taking a reference to the underlying HyperbolicSystem

Definition at line 107 of file hyperbolic_system.h.

Member Function Documentation

◆ view()

template<int dim, typename Number >
template<int dim2, typename Number2 >
auto ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::view ( ) const
inline

Create a modified view from the current one:

Definition at line 116 of file hyperbolic_system.h.

◆ gravity()

template<int dim, typename Number >
DEAL_II_ALWAYS_INLINE ScalarNumber ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::gravity ( ) const
inline

Definition at line 131 of file hyperbolic_system.h.

◆ manning_friction_coefficient()

template<int dim, typename Number >
DEAL_II_ALWAYS_INLINE ScalarNumber ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::manning_friction_coefficient ( ) const
inline

Definition at line 137 of file hyperbolic_system.h.

◆ reference_water_depth()

template<int dim, typename Number >
DEAL_II_ALWAYS_INLINE ScalarNumber ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::reference_water_depth ( ) const
inline

Definition at line 142 of file hyperbolic_system.h.

◆ dry_state_relaxation_small()

template<int dim, typename Number >
DEAL_II_ALWAYS_INLINE ScalarNumber ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::dry_state_relaxation_small ( ) const
inline

Definition at line 148 of file hyperbolic_system.h.

◆ dry_state_relaxation_large()

template<int dim, typename Number >
DEAL_II_ALWAYS_INLINE ScalarNumber ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::dry_state_relaxation_large ( ) const
inline

Definition at line 154 of file hyperbolic_system.h.

◆ precomputation_loop()

template<int dim, typename Number >
template<typename DISPATCH , typename SPARSITY >
void ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::precomputation_loop ( unsigned int  cycle,
const DISPATCH &  dispatch_check,
const SPARSITY &  sparsity_simd,
StateVector state_vector,
unsigned int  left,
unsigned int  right 
) const

Step 0: precompute values for hyperbolic update. This routine is called within our usual loop() idiom in HyperbolicModule

◆ water_depth()

template<int dim, typename Number >
DEAL_II_ALWAYS_INLINE Number ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::water_depth ( const state_type U)
inlinestatic

For a given (1+dim dimensional) state vector U, return the water depth U[0]

Definition at line 709 of file hyperbolic_system.h.

◆ inverse_water_depth_mollified()

template<int dim, typename Number >
DEAL_II_ALWAYS_INLINE Number ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::inverse_water_depth_mollified ( const state_type U) const
inline

For a given (1+dim dimensional) state vector U, return a regularized inverse of the water depth. This function returns 2h / (h^2+max(h, h_cutoff)^2), where h_cutoff is the reference water depth multiplied by eps.

Definition at line 717 of file hyperbolic_system.h.

References ryujin::positive_part().

◆ water_depth_sharp()

template<int dim, typename Number >
DEAL_II_ALWAYS_INLINE Number ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::water_depth_sharp ( const state_type U) const
inline

For a given (1+dim dimensional) state vector U, return the regularized water depth U[0] This function returns max(h, h_cutoff), where h_cutoff is the reference water depth multiplied by eps.

Definition at line 735 of file hyperbolic_system.h.

◆ inverse_water_depth_sharp()

template<int dim, typename Number >
DEAL_II_ALWAYS_INLINE Number ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::inverse_water_depth_sharp ( const state_type U) const
inline

For a given (1+dim dimensional) state vector U, return a regularized inverse of the water depth. This function returns 1 / max(h, h_cutoff), where h_cutoff is the reference water depth multiplied by eps.

Definition at line 751 of file hyperbolic_system.h.

◆ filter_dry_water_depth()

template<int dim, typename Number >
DEAL_II_ALWAYS_INLINE Number ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::filter_dry_water_depth ( const Number &  h) const
inline

Given a water depth h this function returns 0 if h is in the interval [-relaxation * h_cutoff, relaxation * h_cutoff], otherwise h is returned unmodified. Here, h_cutoff is the reference water depth multiplied by eps.

Definition at line 760 of file hyperbolic_system.h.

◆ momentum()

template<int dim, typename Number >
DEAL_II_ALWAYS_INLINE dealii::Tensor< 1, dim, Number > ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::momentum ( const state_type U)
inlinestatic

For a given (1+dim dimensional) state vector U, return the momentum vector [U[1], ..., U[1+dim]].

Definition at line 776 of file hyperbolic_system.h.

◆ kinetic_energy()

template<int dim, typename Number >
DEAL_II_ALWAYS_INLINE Number ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::kinetic_energy ( const state_type U) const
inline

For a given (1+dim dimensional) state vector U, compute and return the kinetic energy.

\[ KE = 1/2 |m|^2 / h \]

Definition at line 788 of file hyperbolic_system.h.

◆ pressure()

template<int dim, typename Number >
DEAL_II_ALWAYS_INLINE Number ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::pressure ( const state_type U) const
inline

For a given (state dimensional) state vector U, compute and return the hydrostatic pressure \(p\):

\[ p = 1/2 g h^2 \]

Definition at line 800 of file hyperbolic_system.h.

◆ speed_of_sound()

template<int dim, typename Number >
DEAL_II_ALWAYS_INLINE Number ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::speed_of_sound ( const state_type U) const
inline

For a given (1+dim dimensional) state vector U, compute the (physical) speed of sound:

\[ c^2 = g * h \]

Definition at line 811 of file hyperbolic_system.h.

◆ mathematical_entropy()

template<int dim, typename Number >
DEAL_II_ALWAYS_INLINE Number ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::mathematical_entropy ( const state_type U) const
inline

For a given (1+dim dimensional) state vector U, compute and return the entropy \(\eta = 1/2 g h^2 + 1/2 |m|^2 / h\).

Definition at line 820 of file hyperbolic_system.h.

◆ mathematical_entropy_derivative()

template<int dim, typename Number >
DEAL_II_ALWAYS_INLINE auto ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::mathematical_entropy_derivative ( const state_type U) const
inline

For a given (1+dim dimensional) state vector U, compute and return the derivative \(\eta'\) of the entropy defined above.

Definition at line 831 of file hyperbolic_system.h.

◆ is_admissible()

template<int dim, typename Number >
DEAL_II_ALWAYS_INLINE bool ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::is_admissible ( const state_type U) const
inline

Returns whether the state U is admissible. If U is a vectorized state then U is admissible if all vectorized values are admissible.

Definition at line 864 of file hyperbolic_system.h.

◆ prescribe_riemann_characteristic()

template<int dim, typename Number >
template<int component>
state_type ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::prescribe_riemann_characteristic ( const state_type U,
const state_type U_bar,
const dealii::Tensor< 1, dim, Number > &  normal 
) const

Decomposes a given state U into Riemann invariants and then replaces the first or second Riemann characteristic from the one taken from U_bar state.

◆ apply_boundary_conditions()

template<int dim, typename Number >
template<typename Lambda >
state_type ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::apply_boundary_conditions ( const dealii::types::boundary_id  id,
const state_type U,
const dealii::Tensor< 1, dim, Number > &  normal,
const Lambda &  get_dirichlet_data 
) const

Apply boundary conditions.

◆ f()

template<int dim, typename Number >
DEAL_II_ALWAYS_INLINE auto ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::f ( const state_type U) const
inline

Given a state U compute the flux

\[ \begin{pmatrix} \textbf m \\ \textbf v\otimes \textbf m + p\mathbb{I}_d \\ \end{pmatrix}, \]

Definition at line 1011 of file hyperbolic_system.h.

◆ g()

template<int dim, typename Number >
DEAL_II_ALWAYS_INLINE auto ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::g ( const state_type U) const
inline

Given a state U compute the flux \g[ \begin{pmatrix} \textbf m \ \textbf v\otimes \textbf m \ \end{pmatrix}, \f]

Definition at line 1030 of file hyperbolic_system.h.

◆ star_state()

template<int dim, typename Number >
DEAL_II_ALWAYS_INLINE auto ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::star_state ( const state_type U,
const Number &  Z_left,
const Number &  Z_right 
) const
inline

For a given (1+dim dimensional) state vector U and left/right topography states Z_left and Z_right, return the star_state U_star

Definition at line 1047 of file hyperbolic_system.h.

◆ equilibrated_states()

template<int dim, typename Number >
DEAL_II_ALWAYS_INLINE auto ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::equilibrated_states ( const flux_contribution_type flux_i,
const flux_contribution_type flux_j 
) const
inline

Given precomputed flux contributions prec_i and prec_j compute the equilibrated states \(U_i^{\ast,j}\) and \(U_j^{\ast,i}\).

Definition at line 1062 of file hyperbolic_system.h.

◆ flux_contribution() [1/2]

template<int dim, typename Number >
DEAL_II_ALWAYS_INLINE auto ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::flux_contribution ( const PrecomputedVector pv,
const InitialPrecomputedVector piv,
const unsigned int  i,
const state_type U_i 
) const
inline

Given a state U_i and an index i compute flux contributions.

Intended usage:

for (unsigned int i = n_internal; i < n_owned; ++i) {
// ...
const auto flux_i = flux_contribution(precomputed..., i, U_i);
for (unsigned int col_idx = 1; col_idx < row_length; ++col_idx) {
// ...
const auto flux_j = flux_contribution(precomputed..., js, U_j);
const auto flux_ij = flux_divergence(flux_i, flux_j, c_ij);
}
}
state_type flux_divergence(const flux_contribution_type &flux_i, const flux_contribution_type &flux_j, const dealii::Tensor< 1, dim, Number > &c_ij) const
flux_contribution_type flux_contribution(const PrecomputedVector &pv, const InitialPrecomputedVector &piv, const unsigned int i, const state_type &U_i) const

For the Shallow water equations we simply retrieve the bathymetry and return, both, state and bathymetry.

Definition at line 1078 of file hyperbolic_system.h.

◆ flux_contribution() [2/2]

template<int dim, typename Number >
DEAL_II_ALWAYS_INLINE auto ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::flux_contribution ( const PrecomputedVector pv,
const InitialPrecomputedVector piv,
const unsigned int *  js,
const state_type U_j 
) const
inline

Definition at line 1091 of file hyperbolic_system.h.

◆ flux_divergence()

template<int dim, typename Number >
DEAL_II_ALWAYS_INLINE auto ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::flux_divergence ( const flux_contribution_type flux_i,
const flux_contribution_type flux_j,
const dealii::Tensor< 1, dim, Number > &  c_ij 
) const
inline

Given precomputed flux contributions prec_i and prec_j compute the equilibrated, low-order flux \((f(U_i^{\ast,j}) + f(U_j^{\ast,i})\)

Definition at line 1104 of file hyperbolic_system.h.

References ryujin::add(), and ryujin::contract().

◆ high_order_flux_divergence()

template<int dim, typename Number >
DEAL_II_ALWAYS_INLINE auto ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::high_order_flux_divergence ( const flux_contribution_type flux_i,
const flux_contribution_type flux_j,
const dealii::Tensor< 1, dim, Number > &  c_ij 
) const
inline

Given precomputed flux contributions prec_i and prec_j compute the high-order flux \((f(U_i^{\ast,j}) + f(U_j^{\ast,i})\)

Definition at line 1136 of file hyperbolic_system.h.

References ryujin::add(), and ryujin::contract().

◆ affine_shift()

template<int dim, typename Number >
DEAL_II_ALWAYS_INLINE auto ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::affine_shift ( const flux_contribution_type flux_i,
const flux_contribution_type flux_j,
const dealii::Tensor< 1, dim, Number > &  c_ij,
const Number &  d_ij 
) const
inline

Given precomputed flux contributions prec_i and prec_j compute the equilibrated, low-order affine shift \( B_{ij} = -2d_ij(U^{\ast,j}_i)-2f((U^{\ast,j}_i))c_ij\).

Definition at line 1163 of file hyperbolic_system.h.

◆ manning_friction()

template<int dim, typename Number >
DEAL_II_ALWAYS_INLINE auto ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::manning_friction ( const state_type U,
const Number &  h_star,
const ScalarNumber  tau 
) const
inline

A regularized Gauckler-Manning friction coefficient.

FIXME: details

Definition at line 1183 of file hyperbolic_system.h.

◆ nodal_source() [1/2]

template<int dim, typename Number >
DEAL_II_ALWAYS_INLINE auto ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::nodal_source ( const PrecomputedVector pv,
const unsigned int  i,
const state_type U_i,
const ScalarNumber  tau 
) const
inline

Definition at line 1210 of file hyperbolic_system.h.

◆ nodal_source() [2/2]

template<int dim, typename Number >
DEAL_II_ALWAYS_INLINE auto ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::nodal_source ( const PrecomputedVector pv,
const unsigned int *  js,
const state_type U_j,
const ScalarNumber  tau 
) const
inline

Definition at line 1225 of file hyperbolic_system.h.

◆ expand_state()

template<int dim, typename Number >
template<typename ST >
state_type ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::expand_state ( const ST &  state) const

Given a state vector associated with a different spatial dimensions than the current one, return an "expanded" version of the state vector associated with dim spatial dimensions where the momentum vector of the conserved state state is expaned with zeros to a total length of dim entries.

Note
dim has to be larger or equal than the dimension of the ST vector.

◆ from_initial_state()

template<int dim, typename Number >
template<typename ST >
state_type ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::from_initial_state ( const ST &  initial_state) const

Given an initial state [h, u_1, ..., u_d] return a conserved state [h, m_1, ..., m_d].

This function simply calls from_primitive_state() and expand_state().

Note
This function is used to conveniently convert (user provided) primitive initial states to a conserved state in the ShallowWaterInitialStateLibrary.

◆ from_primitive_state()

template<int dim, typename Number >
DEAL_II_ALWAYS_INLINE auto ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::from_primitive_state ( const state_type primitive_state) const
inline

Given a primitive state [h, u_1, ..., u_d] return a conserved state

Definition at line 1273 of file hyperbolic_system.h.

◆ to_primitive_state()

template<int dim, typename Number >
DEAL_II_ALWAYS_INLINE auto ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::to_primitive_state ( const state_type state) const
inline

Given a conserved state return a primitive state [h, u_1, ..., u_d]

Definition at line 1289 of file hyperbolic_system.h.

◆ apply_galilei_transform()

template<int dim, typename Number >
template<typename Lambda >
state_type ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::apply_galilei_transform ( const state_type state,
const Lambda &  lambda 
) const

Transform the current state according to a given operator lambda acting on a dim dimensional momentum (or velocity) vector.

Member Data Documentation

◆ problem_dimension

template<int dim, typename Number >
constexpr unsigned int ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::problem_dimension = 1 + dim
staticconstexpr

The dimension of the state space.

Definition at line 178 of file hyperbolic_system.h.

◆ component_names

template<int dim, typename Number >
const auto ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::component_names
inlinestatic
Initial value:
=
[]() -> std::array<std::string, problem_dimension> {
if constexpr (dim == 1)
return {"h", "m"};
else if constexpr (dim == 2)
return {"h", "m_1", "m_2"};
else if constexpr (dim == 3)
return {"h", "m_1", "m_2", "m_3"};
__builtin_trap();
}()

An array holding all component names of the conserved state as a string.

Definition at line 200 of file hyperbolic_system.h.

◆ primitive_component_names

template<int dim, typename Number >
const auto ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::primitive_component_names
inlinestatic
Initial value:
=
[]() -> std::array<std::string, problem_dimension> {
if constexpr (dim == 1)
return {"h", "v"};
else if constexpr (dim == 2)
return {"h", "v_1", "v_2"};
else if constexpr (dim == 3)
return {"h", "v_1", "v_2", "v_3"};
__builtin_trap();
}()

An array holding all component names of the primitive state as a string.

Definition at line 215 of file hyperbolic_system.h.

◆ n_precomputed_values

template<int dim, typename Number >
constexpr unsigned int ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::n_precomputed_values = 2
staticconstexpr

The number of precomputed values.

Definition at line 229 of file hyperbolic_system.h.

◆ precomputed_names

template<int dim, typename Number >
const auto ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::precomputed_names
inlinestatic
Initial value:
=
std::array<std::string, n_precomputed_values>{"eta_m", "h_star"}

An array holding all component names of the precomputed values.

Definition at line 239 of file hyperbolic_system.h.

◆ n_initial_precomputed_values

template<int dim, typename Number >
constexpr unsigned int ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::n_initial_precomputed_values = 1
staticconstexpr

The number of precomputed initial values.

Definition at line 245 of file hyperbolic_system.h.

◆ initial_precomputed_names

template<int dim, typename Number >
const auto ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::initial_precomputed_names
inlinestatic
Initial value:
=
std::array<std::string, n_initial_precomputed_values>{"bathymetry"}

An array holding all component names of the precomputed values.

Definition at line 256 of file hyperbolic_system.h.

◆ n_precomputation_cycles

template<int dim, typename Number >
constexpr unsigned int ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::n_precomputation_cycles = 1
staticconstexpr

The number of precomputation cycles.

Definition at line 294 of file hyperbolic_system.h.

◆ have_high_order_flux

template<int dim, typename Number >
constexpr bool ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::have_high_order_flux = true
staticconstexpr

The low-order and high-order fluxes differ:

Definition at line 522 of file hyperbolic_system.h.

◆ have_source_terms

template<int dim, typename Number >
constexpr bool ryujin::ShallowWater::HyperbolicSystemView< dim, Number >::have_source_terms = true
staticconstexpr

We do have source terms

Definition at line 551 of file hyperbolic_system.h.


The documentation for this class was generated from the following file: