ryujin 2.1.1 revision 0348cbb53a3e4b1da2a4c037e81f88f2d21ce219
|
#include <source/scalar_conservation/riemann_solver.h>
Typedefs and constexpr constants | |
using | View = HyperbolicSystemView< dim, Number > |
using | ScalarNumber = typename View::ScalarNumber |
using | state_type = typename View::state_type |
using | precomputed_type = typename View::precomputed_type |
using | PrecomputedVector = typename View::PrecomputedVector |
using | Parameters = RiemannSolverParameters< ScalarNumber > |
static constexpr auto | problem_dimension = View::problem_dimension |
Compute wavespeed estimates | |
RiemannSolver (const HyperbolicSystem &hyperbolic_system, const Parameters ¶meters, const PrecomputedVector &precomputed_values) | |
Number | compute (const Number &u_i, const Number &u_j, const precomputed_type &prec_i, const precomputed_type &prec_j, const dealii::Tensor< 1, dim, Number > &n_ij) const |
Number | compute (const state_type &U_i, const state_type &U_j, const unsigned int i, const unsigned int *js, const dealii::Tensor< 1, dim, Number > &n_ij) const |
A fast estimate for a sufficient maximal wavespeed of the 1D Riemann problem. The wavespeed estimate is based on a guaranteed upper bound on the maximal wavespeed for convex fluxes, see Example 79.17 on page 333 of [GuermondErn2021]. As well as an augmented "Roe average" based on an entropy inequality of a suitable Krŭzkov entropy, see [7] Section 4.
Definition at line 75 of file riemann_solver.h.
using ryujin::ScalarConservation::RiemannSolver< dim, Number >::View = HyperbolicSystemView<dim, Number> |
Definition at line 83 of file riemann_solver.h.
using ryujin::ScalarConservation::RiemannSolver< dim, Number >::ScalarNumber = typename View::ScalarNumber |
Definition at line 85 of file riemann_solver.h.
using ryujin::ScalarConservation::RiemannSolver< dim, Number >::state_type = typename View::state_type |
Definition at line 89 of file riemann_solver.h.
using ryujin::ScalarConservation::RiemannSolver< dim, Number >::precomputed_type = typename View::precomputed_type |
Definition at line 91 of file riemann_solver.h.
using ryujin::ScalarConservation::RiemannSolver< dim, Number >::PrecomputedVector = typename View::PrecomputedVector |
Definition at line 93 of file riemann_solver.h.
using ryujin::ScalarConservation::RiemannSolver< dim, Number >::Parameters = RiemannSolverParameters<ScalarNumber> |
Definition at line 95 of file riemann_solver.h.
|
inline |
Constructor taking a HyperbolicSystem instance as argument
Definition at line 107 of file riemann_solver.h.
Number ryujin::ScalarConservation::RiemannSolver< dim, Number >::compute | ( | const Number & | u_i, |
const Number & | u_j, | ||
const precomputed_type & | prec_i, | ||
const precomputed_type & | prec_j, | ||
const dealii::Tensor< 1, dim, Number > & | n_ij | ||
) | const |
For two states u_i
, u_j
, precomputed values prec_i
, prec_j
, and a (normalized) "direction" n_ij compute an upper bound estimate for the wavespeed.
Definition at line 23 of file riemann_solver.template.h.
Referenced by ryujin::HyperbolicModule< Description, dim, Number >::step().
|
inline |
For two given states U_i a U_j and a (normalized) "direction" n_ij compute an estimate for an upper bound of lambda.
Definition at line 196 of file riemann_solver.template.h.
|
staticconstexpr |
Definition at line 87 of file riemann_solver.h.