![]() |
ryujin 2.1.1 revision ae95f0746689649c34c5726a2385af071c7c8efd
|
Bennett Clayton, Jean-Luc Guermond, and Bojan Popov. Invariant domain-preserving approximations for the Euler equations with tabulated equation of state. SIAM Journal on Scientific Computing, 44(1):A444–A470, 2022.
Bennett Clayton, Jean-Luc Guermond, Matthias Maier, Bojan Popov, and Eric J. Tovar. Robust second-order approximation of the compressible euler equations with an arbitrary equation of state. Journal of Computational Physics, page 111926, 2023.
Jean-Luc Guermond and Bojan Popov. Fast estimation of the maximum wave speed in the riemann problem for the euler equations. J. Comput. Phys., 321:908–926, 2016.
Jean-Luc Guermond and Bojan Popov. Invariant domains and first-order continuous finite element approximation for hyperbolic systems. SIAM J. Numer. Anal., 54(4):2466–2489, 2016.
Jean-Luc Guermond, Richard Pasquetti, and Bojan Popov. Entropy viscosity method for nonlinear conservation laws. J. Comput. Phys., 230(11):4248–4267, 2011.
Jean-Luc Guermond, Manuel Quezada de Luna, Bojan Popov, Christopher E. Kees, and Matthew W. Farthing. Well-balanced second-order finite element approximation of the shallow water equations with friction. SIAM J. Sci. Comput., 40(6):A3873–A3901, 2018.
Jean-Luc Guermond, Murtazo Nazarov, Bojan Popov, and Ignacio Tomas. Second-order invariant domain preserving approximation of the Euler equations using convex limiting. SIAM J. Sci. Comput., 40(5):A3211–A3239, 2018.
Jean-Luc Guermond, Matthias Maier, Bojan Popov, and Ignacio Tomas. Second-order invariant domain preserving approximation of the compressible navier–stokes equations. Computer Methods in Applied Mechanics and Engineering, 375(1):113608,
Jean-Luc Guermond, Martin Kronbichler, Matthias Maier, Bojan Popov, and Ignacio Tomas. On the implementation of a robust and efficient finite element-based parallel solver for the compressible navier-stokes equations. Computer Methods in Applied Mechanics and Engineering, 389:114250, 2022.
Matthias Maier and Martin Kronbichler. Efficient parallel 3d computation of the compressible euler equations with an invariant-domain preserving second-order finite-element scheme. ACM Transactions on Parallel Computing, 8(3):16:1–30, 2021.