ryujin 2.1.1 revision 955e869188d49b3c97ca7b1cf4fd9ceb0e6f46ef
List of all members
ryujin::Euler::Limiter< dim, Number > Class Template Reference

#include <source/euler/limiter.h>

Public Member Functions

Stencil-based computation of bounds

Intended usage:

for (unsigned int i = n_internal; i < n_owned; ++i) {
// ...
limiter.reset(i, U_i, flux_i);
for (unsigned int col_idx = 1; col_idx < row_length; ++col_idx) {
// ...
limiter.accumulate(js, U_j, flux_j, scaled_c_ij, affine_shift);
}
limiter.bounds(hd_i);
}
void reset(const unsigned int i, const state_type &U_i, const flux_contribution_type &flux_i)
Definition: limiter.h:323
void accumulate(const unsigned int *js, const state_type &U_j, const flux_contribution_type &flux_j, const dealii::Tensor< 1, dim, Number > &scaled_c_ij, const state_type &affine_shift)
Definition: limiter.h:346
Bounds bounds(const Number hd_i) const
Definition: limiter.h:398
void reset (const unsigned int i, const state_type &U_i, const flux_contribution_type &flux_i)
 
void accumulate (const unsigned int *js, const state_type &U_j, const flux_contribution_type &flux_j, const dealii::Tensor< 1, dim, Number > &scaled_c_ij, const state_type &affine_shift)
 
Bounds bounds (const Number hd_i) const
 
Convex limiter
std::tuple< Number, bool > limit (const Bounds &bounds, const state_type &U, const state_type &P, const Number t_min=Number(0.), const Number t_max=Number(1.)) const
 

Typedefs and constexpr constants

using View = HyperbolicSystemView< dim, Number >
 
using ScalarNumber = typename View::ScalarNumber
 
using state_type = typename View::state_type
 
using flux_contribution_type = typename View::flux_contribution_type
 
using precomputed_type = typename View::precomputed_type
 
using PrecomputedVector = typename View::PrecomputedVector
 
using Parameters = LimiterParameters< ScalarNumber >
 
static constexpr auto problem_dimension = View::problem_dimension
 

Computation and manipulation of bounds

using Bounds = std::array< Number, n_bounds >
 
static constexpr unsigned int n_bounds = 3
 
 Limiter (const HyperbolicSystem &hyperbolic_system, const Parameters &parameters, const PrecomputedVector &precomputed_values)
 
Bounds projection_bounds_from_state (const unsigned int i, const state_type &U_i) const
 
Bounds combine_bounds (const Bounds &bounds_left, const Bounds &bounds_right) const
 
Bounds fully_relax_bounds (const Bounds &bounds, const Number &hd) const
 

Detailed Description

template<int dim, typename Number = double>
class ryujin::Euler::Limiter< dim, Number >

The convex limiter.

The class implements a convex limiting technique as described in [10] and [13]. Given a computed set of bounds and an update direction \(\mathbf P_{ij}\) one can now determine a candidate \(\tilde l_{ij}\) by computing

\begin{align} \tilde l_{ij} = \max_{l\,\in\,[0,1]} \,\Big\{\rho_{\text{min}}\,\le\,\rho\,(\mathbf U_i +\tilde l_{ij}\mathbf P_{ij}) \,\le\,\rho_{\text{max}},\quad \phi_{\text{min}}\,\le\,\phi\,(\mathbf U_{i}+\tilde l_{ij}\mathbf P_{ij})\Big\}, \end{align}

where \(\psi\) denots the specific entropy [13].

Algorithmically this is accomplished as follows: Given an initial interval \([t_L,t_R]\), where \(t_L\) is a good state, we first make the interval smaller ensuring the bounds on the density are fulfilled. If limiting on the specific entropy is selected we then then perform a quadratic Newton iteration (updating \([t_L,t_R]\) solving for the root of a 3-convex function

\begin{align} \Psi(\mathbf U)\;=\;\rho^{\gamma+1}(\mathbf U)\,\big(\phi(\mathbf U)-\phi_{\text{min}}\big). \end{align}

Definition at line 96 of file limiter.h.

Member Typedef Documentation

◆ View

template<int dim, typename Number = double>
using ryujin::Euler::Limiter< dim, Number >::View = HyperbolicSystemView<dim, Number>

Definition at line 104 of file limiter.h.

◆ ScalarNumber

template<int dim, typename Number = double>
using ryujin::Euler::Limiter< dim, Number >::ScalarNumber = typename View::ScalarNumber

Definition at line 106 of file limiter.h.

◆ state_type

template<int dim, typename Number = double>
using ryujin::Euler::Limiter< dim, Number >::state_type = typename View::state_type

Definition at line 110 of file limiter.h.

◆ flux_contribution_type

template<int dim, typename Number = double>
using ryujin::Euler::Limiter< dim, Number >::flux_contribution_type = typename View::flux_contribution_type

Definition at line 112 of file limiter.h.

◆ precomputed_type

template<int dim, typename Number = double>
using ryujin::Euler::Limiter< dim, Number >::precomputed_type = typename View::precomputed_type

Definition at line 114 of file limiter.h.

◆ PrecomputedVector

template<int dim, typename Number = double>
using ryujin::Euler::Limiter< dim, Number >::PrecomputedVector = typename View::PrecomputedVector

Definition at line 116 of file limiter.h.

◆ Parameters

template<int dim, typename Number = double>
using ryujin::Euler::Limiter< dim, Number >::Parameters = LimiterParameters<ScalarNumber>

Definition at line 118 of file limiter.h.

◆ Bounds

template<int dim, typename Number = double>
using ryujin::Euler::Limiter< dim, Number >::Bounds = std::array<Number, n_bounds>

Array type used to store accumulated bounds.

Definition at line 134 of file limiter.h.

Constructor & Destructor Documentation

◆ Limiter()

template<int dim, typename Number = double>
ryujin::Euler::Limiter< dim, Number >::Limiter ( const HyperbolicSystem hyperbolic_system,
const Parameters parameters,
const PrecomputedVector precomputed_values 
)
inline

Constructor taking a HyperbolicSystem instance as argument

Definition at line 139 of file limiter.h.

Member Function Documentation

◆ projection_bounds_from_state()

template<int dim, typename Number >
DEAL_II_ALWAYS_INLINE auto ryujin::Euler::Limiter< dim, Number >::projection_bounds_from_state ( const unsigned int  i,
const state_type U_i 
) const
inline

Given a state U_i and an index i return "strict" bounds, i.e., a minimal convex set containing the state.

Definition at line 270 of file limiter.h.

◆ combine_bounds()

template<int dim, typename Number >
DEAL_II_ALWAYS_INLINE auto ryujin::Euler::Limiter< dim, Number >::combine_bounds ( const Bounds bounds_left,
const Bounds bounds_right 
) const
inline

Given two bounds bounds_left, bounds_right, this function computes a larger, combined set of bounds that this is a (convex) superset of the two.

Definition at line 283 of file limiter.h.

◆ fully_relax_bounds()

template<int dim, typename Number >
DEAL_II_ALWAYS_INLINE auto ryujin::Euler::Limiter< dim, Number >::fully_relax_bounds ( const Bounds bounds,
const Number &  hd 
) const
inline

This function applies a relaxation to a given a (strict) bound bounds using a non dimensionalized measure hd (that should scale as $h^d$, where $h$ is the local mesh size). This is done for the case of the Euler equations by multiplying maximum bounds with $(1+r)$ and minimum bounds with $(1-r)$, while ensuring that the bounds still describe an admissible state.

Definition at line 297 of file limiter.h.

◆ reset()

template<int dim, typename Number >
DEAL_II_ALWAYS_INLINE void ryujin::Euler::Limiter< dim, Number >::reset ( const unsigned int  i,
const state_type U_i,
const flux_contribution_type flux_i 
)
inline

Reset temporary storage

Definition at line 323 of file limiter.h.

◆ accumulate()

template<int dim, typename Number >
DEAL_II_ALWAYS_INLINE void ryujin::Euler::Limiter< dim, Number >::accumulate ( const unsigned int *  js,
const state_type U_j,
const flux_contribution_type flux_j,
const dealii::Tensor< 1, dim, Number > &  scaled_c_ij,
const state_type affine_shift 
)
inline

When looping over the sparsity row, add the contribution associated with the neighboring state U_j.

Definition at line 346 of file limiter.h.

◆ bounds()

template<int dim, typename Number >
DEAL_II_ALWAYS_INLINE auto ryujin::Euler::Limiter< dim, Number >::bounds ( const Number  hd_i) const
inline

Return the computed bounds (with relaxation applied).

Definition at line 398 of file limiter.h.

◆ limit()

template<int dim, typename Number >
std::tuple< Number, bool > ryujin::Euler::Limiter< dim, Number >::limit ( const Bounds bounds,
const state_type U,
const state_type P,
const Number  t_min = Number(0.),
const Number  t_max = Number(1.) 
) const

Given a state \(\mathbf U\) and an update \(\mathbf P\) this function computes and returns the maximal coefficient \(t\), obeying \(t_{\text{min}} < t < t_{\text{max}}\), such that the selected local minimum principles are obeyed.

The returned boolean is set to true if the original low-order update was within bounds.

Note
If the debug option DEBUG_EXPENSIVE_BOUNDS_CHECK is set to true, then the boolean is set to true if the low-order and the resulting high-order update are within bounds. The latter might be violated due to round-off errors when computing the limiter bounds.

Definition at line 17 of file limiter.template.h.

References ryujin::negative_part(), ryujin::positive_part(), ryujin::pow(), and ryujin::quadratic_newton_step().

Member Data Documentation

◆ problem_dimension

template<int dim, typename Number = double>
constexpr auto ryujin::Euler::Limiter< dim, Number >::problem_dimension = View::problem_dimension
staticconstexpr

Definition at line 108 of file limiter.h.

◆ n_bounds

template<int dim, typename Number = double>
constexpr unsigned int ryujin::Euler::Limiter< dim, Number >::n_bounds = 3
staticconstexpr

The number of stored entries in the bounds array.

Definition at line 129 of file limiter.h.


The documentation for this class was generated from the following files: