ryujin 2.1.1 revision 0348cbb53a3e4b1da2a4c037e81f88f2d21ce219
|
#include <source/euler/initial_state_becker_solution.h>
Public Types | |
using | HyperbolicSystem = typename Description::HyperbolicSystem |
using | View = typename Description::template HyperbolicSystemView< dim, Number > |
using | state_type = typename View::state_type |
Public Types inherited from ryujin::InitialState< Description, dim, Number > | |
using | View = typename Description::template HyperbolicSystemView< dim, Number > |
using | state_type = typename View::state_type |
using | initial_precomputed_type = typename View::initial_precomputed_type |
Public Member Functions | |
BeckerSolution (const HyperbolicSystem &hyperbolic_system, const std::string &subsection) | |
state_type | compute (const dealii::Point< dim > &point, Number t) final |
Public Member Functions inherited from ryujin::InitialState< Description, dim, Number > | |
InitialState (const std::string &name, const std::string &subsection) | |
virtual state_type | compute (const dealii::Point< dim > &point, Number t)=0 |
virtual initial_precomputed_type | initial_precomputations (const dealii::Point< dim > &) |
auto & | name () const |
The Becker solution.
An analytic solution of the compressible Navier-Stokes system as described in [1].
The initial state is a 1D stationary, viscous shock that is expanded to 2D/3D if necessary with an additional Galilei transform to add a velocity. Internally, the routine solves the equation
\begin{equation} x = \frac{2}{\gamma+1} \frac{\kappa}{m_0 c_v} \Big\{\frac{v_0}{v_0-v_1}\log\Big(\frac{v_0-v(x)}{v_0-v_{01}}\Big) - \frac{v_1}{v_0-v_1}\log\Big(\frac{v(x)-v_1}{v_{01}-v_1}\Big)\Big\}. \end{equation}
to high accuracy to recover the function \(v(x)\). This information is then used to compute density and internal energy as follows:
\begin{equation} \rho(x) = \frac{m_0}{v(x)}, \qquad e(x) = \frac{1}{2\gamma}\Big(\frac{\gamma+1}{\gamma-1}v_{01}^2 - v^2(x)\Big). \end{equation}
For details see the dicussion in [11] Section 7.2.
t
and position x
. Definition at line 45 of file initial_state_becker_solution.h.
using ryujin::EulerInitialStates::BeckerSolution< Description, dim, Number >::HyperbolicSystem = typename Description::HyperbolicSystem |
Definition at line 48 of file initial_state_becker_solution.h.
using ryujin::EulerInitialStates::BeckerSolution< Description, dim, Number >::View = typename Description::template HyperbolicSystemView<dim, Number> |
Definition at line 49 of file initial_state_becker_solution.h.
using ryujin::EulerInitialStates::BeckerSolution< Description, dim, Number >::state_type = typename View::state_type |
Definition at line 51 of file initial_state_becker_solution.h.
|
inline |
Definition at line 53 of file initial_state_becker_solution.h.
|
inlinefinalvirtual |
Given a position point
returns the corresponding (conserved) initial state. The function is used to interpolate initial values and enforce Dirichlet boundary conditions. For the latter, the function signature has an additional parameter t
denoting the current time to allow for time-dependent (in-flow) Dirichlet data.
Implements ryujin::InitialState< Description, dim, Number >.
Definition at line 191 of file initial_state_becker_solution.h.