ryujin 2.1.1 revision 0348cbb53a3e4b1da2a4c037e81f88f2d21ce219
Public Types | Public Member Functions | List of all members
ryujin::EulerInitialStates::BeckerSolution< Description, dim, Number > Class Template Reference

#include <source/euler/initial_state_becker_solution.h>

Inheritance diagram for ryujin::EulerInitialStates::BeckerSolution< Description, dim, Number >:
Inheritance graph
[legend]
Collaboration diagram for ryujin::EulerInitialStates::BeckerSolution< Description, dim, Number >:
Collaboration graph
[legend]

Public Types

using HyperbolicSystem = typename Description::HyperbolicSystem
 
using View = typename Description::template HyperbolicSystemView< dim, Number >
 
using state_type = typename View::state_type
 
- Public Types inherited from ryujin::InitialState< Description, dim, Number >
using View = typename Description::template HyperbolicSystemView< dim, Number >
 
using state_type = typename View::state_type
 
using initial_precomputed_type = typename View::initial_precomputed_type
 

Public Member Functions

 BeckerSolution (const HyperbolicSystem &hyperbolic_system, const std::string &subsection)
 
state_type compute (const dealii::Point< dim > &point, Number t) final
 
- Public Member Functions inherited from ryujin::InitialState< Description, dim, Number >
 InitialState (const std::string &name, const std::string &subsection)
 
virtual state_type compute (const dealii::Point< dim > &point, Number t)=0
 
virtual initial_precomputed_type initial_precomputations (const dealii::Point< dim > &)
 
auto & name () const
 

Detailed Description

template<typename Description, int dim, typename Number>
class ryujin::EulerInitialStates::BeckerSolution< Description, dim, Number >

The Becker solution.

An analytic solution of the compressible Navier-Stokes system as described in [1].

The initial state is a 1D stationary, viscous shock that is expanded to 2D/3D if necessary with an additional Galilei transform to add a velocity. Internally, the routine solves the equation

\begin{equation} x = \frac{2}{\gamma+1} \frac{\kappa}{m_0 c_v} \Big\{\frac{v_0}{v_0-v_1}\log\Big(\frac{v_0-v(x)}{v_0-v_{01}}\Big) - \frac{v_1}{v_0-v_1}\log\Big(\frac{v(x)-v_1}{v_{01}-v_1}\Big)\Big\}. \end{equation}

to high accuracy to recover the function \(v(x)\). This information is then used to compute density and internal energy as follows:

\begin{equation} \rho(x) = \frac{m_0}{v(x)}, \qquad e(x) = \frac{1}{2\gamma}\Big(\frac{\gamma+1}{\gamma-1}v_{01}^2 - v^2(x)\Big). \end{equation}

For details see the dicussion in [11] Section 7.2.

Note
This class returns the analytic solution as a function of time t and position x.

Definition at line 45 of file initial_state_becker_solution.h.

Member Typedef Documentation

◆ HyperbolicSystem

template<typename Description , int dim, typename Number >
using ryujin::EulerInitialStates::BeckerSolution< Description, dim, Number >::HyperbolicSystem = typename Description::HyperbolicSystem

Definition at line 48 of file initial_state_becker_solution.h.

◆ View

template<typename Description , int dim, typename Number >
using ryujin::EulerInitialStates::BeckerSolution< Description, dim, Number >::View = typename Description::template HyperbolicSystemView<dim, Number>

Definition at line 49 of file initial_state_becker_solution.h.

◆ state_type

template<typename Description , int dim, typename Number >
using ryujin::EulerInitialStates::BeckerSolution< Description, dim, Number >::state_type = typename View::state_type

Definition at line 51 of file initial_state_becker_solution.h.

Constructor & Destructor Documentation

◆ BeckerSolution()

template<typename Description , int dim, typename Number >
ryujin::EulerInitialStates::BeckerSolution< Description, dim, Number >::BeckerSolution ( const HyperbolicSystem hyperbolic_system,
const std::string &  subsection 
)
inline

Definition at line 53 of file initial_state_becker_solution.h.

Member Function Documentation

◆ compute()

template<typename Description , int dim, typename Number >
state_type ryujin::EulerInitialStates::BeckerSolution< Description, dim, Number >::compute ( const dealii::Point< dim > &  point,
Number  t 
)
inlinefinalvirtual

Given a position point returns the corresponding (conserved) initial state. The function is used to interpolate initial values and enforce Dirichlet boundary conditions. For the latter, the function signature has an additional parameter t denoting the current time to allow for time-dependent (in-flow) Dirichlet data.

Implements ryujin::InitialState< Description, dim, Number >.

Definition at line 191 of file initial_state_becker_solution.h.


The documentation for this class was generated from the following file: