![]() |
ryujin 2.1.1 revision dbf0e3ba7acdb60b6d558e4257815df4a8f8daf9
|
#include <source/euler/initial_state_ramp_up.h>
Public Types | |
using | HyperbolicSystem = typename Description::HyperbolicSystem |
using | View = typename Description::template HyperbolicSystemView< dim, Number > |
using | state_type = typename View::state_type |
![]() | |
using | View = typename Description::template HyperbolicSystemView< dim, Number > |
using | state_type = typename View::state_type |
using | initial_precomputed_type = typename View::initial_precomputed_type |
Public Member Functions | |
RampUp (const HyperbolicSystem &hyperbolic_system, const std::string subsection) | |
auto | compute (const dealii::Point< dim > &, Number t) -> state_type final |
![]() | |
InitialState (const std::string &name, const std::string &subsection) | |
virtual state_type | compute (const dealii::Point< dim > &point, Number t)=0 |
virtual initial_precomputed_type | initial_precomputations (const dealii::Point< dim > &) |
const auto & | name () const |
A time-dependent state given by an initial state primite_left_
valid for \( t \le t_{\text{left}} \) and a final state primite_right_
valid for \( t \ge t_{\text{right}} \). In between, a smooth interpolation is performed.
Definition at line 25 of file initial_state_ramp_up.h.
using ryujin::EulerInitialStates::RampUp< Description, dim, Number >::HyperbolicSystem = typename Description::HyperbolicSystem |
Definition at line 28 of file initial_state_ramp_up.h.
using ryujin::EulerInitialStates::RampUp< Description, dim, Number >::View = typename Description::template HyperbolicSystemView<dim, Number> |
Definition at line 29 of file initial_state_ramp_up.h.
using ryujin::EulerInitialStates::RampUp< Description, dim, Number >::state_type = typename View::state_type |
Definition at line 31 of file initial_state_ramp_up.h.
|
inline |
Definition at line 33 of file initial_state_ramp_up.h.
|
inlinefinalvirtual |
Given a position point
returns the corresponding (conserved) initial state. The function is used to interpolate initial values and enforce Dirichlet boundary conditions. For the latter, the function signature has an additional parameter t
denoting the current time to allow for time-dependent (in-flow) Dirichlet data.
Implements ryujin::InitialState< Description, dim, Number >.
Definition at line 71 of file initial_state_ramp_up.h.